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Variable Growth Across Species and
Life Stages in Caribbean Reef
Octocorals
Natascha Borgstein, Diana M. Beltrán and Carlos Prada*

Department of Biological Sciences, The University of Rhode Island, Kingston, RI, United States

Growth rates often measured as linear extension rates can serve as a proxy for
organismal performance across environments, yet few estimates of these growth
rates exist, and fewer are reported from multi-year monitoring. We studied the
effect of species, depth, exposure, and life stages on the linear extension rates of
common octocorals inhabiting Caribbean reefs. We monitored 16 species from the
families Briareidae, Gorgoniidae, and Plexauridae, including eight genera: Antillogorgia,
Briareum, Eunicea, Gorgonia, Muricea, Muriceopsis, Plexaura, and Plexaurella. We
surveyed over 2,000 colonies across eight reefs in Southwest Puerto Rico from 2003
to 2006. Our surveys include reefs along a gradient of water motion from inside
protected reefs to offshore unprotected reefs and from shallow (5 m) forereefs to
deeper environments reaching 25 m. We observed that linear extension rates vary
across species and largely follow branch thickness variation and colony architecture,
with thin plume-like shapes growing faster. We also found that in 7 out of the 16
species, colonies from shallow habitats with brighter and warmer environments have
higher growth rates than colonies in deep, low energy, and darker areas. Importantly,
small/juvenile corals of most species (<10 cm) grew faster than adult colonies. Our data
highlight the possibility that, as climate change continues to deteriorate Caribbean reefs
by decimating scleractinian corals and opening new habitat for less vulnerable species,
plume-like corals with fast growth rates such as species within the genus Antillogorgia
may become the most abundant benthic cnidarians on Caribbean shallow forereefs.

Keywords: octocorals, Caribbean, depth, coral conservation, growth, size dependent growth, growth rates

INTRODUCTION

Coral reefs contribute more than 25% of the biodiversity in the sea, supporting hundreds of
thousands of species that depend on them for nourishment and shelter (Sala and Knowlton, 2006).
Coastal communities depend on the biodiversity of reefs for their food and economy through
artisanal fisheries and tourism, as well as for shoreline protection from hurricanes (Wells et al.,
2006; Costanza et al., 2014). Despite the extensive services that reefs provide to humans, these
ecosystems are declining across the world at an alarming rate due mainly to human activities, our
excessive release of carbon dioxide and our oil-based economy (Pandolfi et al., 2005; Edmunds,
2013; Jackson et al., 2014; Cortés and Reyes-Bonilla, 2017; Hughes et al., 2018). Given the
environmental crisis faced by coral reefs today, it is imperative to learn as much as possible from
their basic biology and apply it to enhance coral conservation.

The Caribbean is one of the reef areas most affected by anthropogenic activities with
coral cover now below 15% (Edmunds, 2013; Ruzicka et al., 2013; Jackson et al., 2014;
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Tsounis and Edmunds, 2017). Recent studies suggest that not
only scleractinians are dying but also reef communities have
changed (Green et al., 2008; Edmunds, 2013; Edmunds and
Lasker, 2016; Tsounis and Edmunds, 2017). Caribbean reefs
have experienced a sharp decline of scleractinian corals and an
increase of octocoral populations in the last 50 years (Ruzicka
et al., 2013; Lenz et al., 2015). Accordingly, octocorals are
becoming dominant in shallow forereefs, replacing scleractinian
hard corals (Ateweberhan et al., 2013; Ruzicka et al., 2013;
Gómez et al., 2015; Lenz et al., 2015; Edmunds and Lasker, 2016;
Tsounis and Edmunds, 2017).

The increased dominance of octocoral species on Caribbean
reefs has been documented in different areas such as in the
Florida Keys, Puerto Rico, and St. John, U.S. Virgin Islands
(Ruzicka et al., 2013; Lenz et al., 2015; Edmunds and Lasker,
2016; Williams et al., 2017). The causes of the sustained increase
in octocoral abundance remains unclear, but the increase in
abundance suggest that octocorals are more resilient, than
scleractinians, to contemporary degradation of marine habitats
as a result of human activities. One reason for the increase in
octocoral abundance in comparison to hard corals is a reduced
effect of climate change due to their lower carbonate needs for
growth, and also their apparent higher tolerance to bleaching
events (Prada et al., 2010; Gabay et al., 2014; Goulet et al.,
2017). To better understand how environmental change will
further alter reef organisms, and reveal why octocorals are so
successful under these stressful conditions, it is essential to study
their basic biology.

One way to understand why octocorals are being aided
by environmental variation in recent decades is by studying
variation in growth rates. Coral growth is a key indicator of
the performance of an individual within a given environment
(Anderson et al., 2017). While several studies exist on variation in
growth rates in scleractinian corals (Hubbard and Scaturo, 1985;
Huston M., 1985; Lough and Cantin, 2014; Forsman et al., 2015),
few studies have quantified growth rates in Caribbean octocorals
(Yoshioka and Yoshioka, 1991; Brazeau and Lasker, 1992; Cadena
and Sánchez, 2010) and none have considered their variation
across environments. This study fills this gap by quantifying
variation in linear extension rates of Caribbean octocorals across
environmental gradients and colony sizes.

Two associated factors that influence linear extension rates
are depth and light levels (Huston M.A., 1985). Across depths,
scleractinian corals grow faster in the luminous waters of
shallow forereefs where water clarity, photosynthesis and energy
from their algal symbionts is highest (Huston M.A., 1985).
Growth rates slow down as depth increases, likely as a result of
lower energy coming from photosynthesis associated with the
exponential decay of light (Huston M.A., 1985). In the shallower
depths, corals are subjected to a broader range on the light
spectrum, which has been shown to decrease their susceptibility
to photoinhibition, meaning they are less likely to be affected by
photooxidative stress and more able to focus on optimal larval
settlement, spatial arrangement, and interspecific competition
(Ben-Zvi et al., 2020). All other factors being equal, brighter
environment should increase growth but the relationship is not
straight forward, as in some cases, feeding from particulate

matter in organisms in deeper environments can offset the lack
of light and in some others photo-inhibition can occur (Lesser
et al., 2010). It is uncertain if these general trends of increased
growth rates in shallow, brighter areas for scleractinian corals
is also applicable to octocorals. In addition, exposure to water
movement, which is often associated with higher number of
organic particles and food, has been associated with faster growth
rates in temperate soft corals (Sebens and Done, 1992). Yet it is
unknown if this also occurs in tropical octocorals.

Another aspect that correlates with changes in linear extension
rates is colony architecture. In scleractinian corals, growth rates
vary across different colony forms with arborescent branching
forms often growing faster vertically than massive forms
(Anderson et al., 2017; Cabral-Tena et al., 2018). Differences
occur as massive forms require more calcium carbonate to
increase vertically (Anderson et al., 2017; Cabral-Tena et al.,
2018). In branching forms, the thickness of the branches as
well as the porosity of the skeleton allow some species to
vertically grow faster. Anthozoans with porous skeletons, such as
acroporids, grow faster than corals with dense skeletons (Huston
M., 1985; Hoegh-Guldberg et al., 2008). In octocorals there are
fewer reports on growth rates and most are for colonies in
the genus Antillogorgia (Yoshioka, 1998; Castanaro and Lasker,
2003; Cadena and Sánchez, 2010) with some exceptions (Brazeau
and Lasker, 1992; Viladrich et al., 2018), and no comparative
studies exist across species with different morphologies and
branch thicknesses.

Along with colony form, both colony size and age can
affect growth rates in anthozoans. Coral-reef organisms compete
fiercely for space, so this growth is essential for their survival
(Sebens, 1983). One of the most vulnerable stages of reef
organisms is the juvenile stage. To limit such vulnerability, corals
prioritize growth (clonal propagation) over sexual reproduction
during early life (Connell, 1973; Hughes and Jackson, 1985;
Viladrich et al., 2017). Once colonies acquire larger sizes, colonies
switch to prioritizing sexual reproduction, as sexual reproduction
and growth are considered competing biological functions of
corals (Chornesky and Peters, 1987; Beiring and Lasker, 2000).
This differential investment of resources from vegetative growth
early on to sexual reproduction later on, generates a pattern in
which small, younger colonies often grow faster than older, larger,
and mature colonies (Hughes and Connell, 1987). Understanding
whether this pattern applies solely to scleractinian corals or if
it can be applied more generally to anthozoans is of utmost
importance to enhance coral restoration (Hagedorn et al.,
2018). More importantly, understanding the differences in linear
extension rates across species and size may enhance predictions
of how reefs will change ecologically as human impacts continue.

Here we quantified variation in linear extension rates across
depth, exposure and size across 16 octocoral species with
different morphologies, some of which are becoming the most
dominant species in most Caribbean forereefs. We compiled
over 2,000 observations of linear extension of octocoral colonies
from 2003 to 2006 to determine if: (1) different species with
different morphologies have different growth rates; (2) if smaller
(presumably younger) colonies grow faster than larger, sexually
mature colonies; (3) if colonies in shallow, brighter areas grow
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FIGURE 1 | Linear extension rates (cm/month) for individual colonies across 16 Caribbean octocoral species. Boxplots shows median values and upper (75) and
lower (25) quantiles. Letters indicate significant differences among groups.

faster than in deeper, darker areas; and (4) if species with thinner
branches achieve faster vertical growth than thicker colonies.
Understanding the rate at which different octocoral species grow
is key to understanding if certain species that are becoming
dominant on Caribbean reefs do so, in part, due to their fast
vertical growth.

MATERIALS AND METHODS

Field Measurements
To understand variation in linear extension rates across species,
we measured colonies annually from 2003 to 2006 at eight reefs
in La Parguera, Puerto Rico, that have been monitored since
2001 as part of a NOAA CRES site (Ballantine et al., 2008).
The reefs are distributed along a gradient from inshore: Romero
(Rom; 17◦ 56.2′N, 66◦ 59.4′W), Enrique (En; 17◦ 56.7′N, 67◦
02.2′W), Pelotas (Pel; 17◦ 57.4′N, 67◦ 04.2′W); to midshelf reefs:
Turrumote (Tur; 17◦ 56.1′N, 67◦ 01.1′W), Media Luna (ML;
17◦ 56.1′N, 67◦ 02.9′W), San Cristobal (SC; 17◦ 56.5′N, 67◦
04.5′W), ending with offshore shelf edge sites: El Hoyo (Hoy;
17◦ 52.6′N, 67◦ 02.6′W) and Weinberg (Wein; 17◦ 53.4′N, 67◦
59.3′W). Within each reef location we sampled colonies across
three (shallow, mid, and deep) depths except in offshore shelf
edge sites, where only deep areas are available. The ranges of

the three sampled depths per site in meters were : Enrique: 2–
3, 7–8, 10–11; Pelotas: 2–3, 7–8, 11–12; San Cristobal: 2–3, 8–9,
14–15; Media Luna: 4–5, 11–12, 15–18; Romero: 2–3, 8–9, 13–
14; Turrumote: 3–4, 9–10, 14–16; El Hoyo: 22–24; and Weinberg:
20–25. Those three depths roughly follow the reef terrace (the
uppermost part of the reef closest to the shore and protected
from wave action), reef break (the highest point of the reef which
causes the waves to break), and deep forereef (steep downwards
slope). The area has been fully described and routinely studied
to monitor variation in species composition of reef organisms
(Ballantine et al., 2008; Yoshioka, 2009; Williams et al., 2017).

At each depth, we sampled two permanent transects parallel
to depth profiles. To quantify variation in liner extension rates
and resample colonies across time, we monitored permanent
1 m × l m quadrats in each of the replicate transects. All
quadrats were permanently defined by nails. Colonies were
identified to the lowest taxonomic level feasible based on
field characteristics following Sanchez and Wirshing (2005),
and verified by microscopic examinations of sclerites in
the laboratory when necessary, following Bayer (1961). We
considered juveniles to be <10 cm in height, as that is the
size at which mortality rates decrease to become comparable
with that of adults (Yoshioka, 1998). Colonies <10 cm die
more often (Yoshioka and Yoshioka, 1991; Yoshioka, 1998). Our
monitored taxa include (Supplementary Table S1): Briareum
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FIGURE 2 | Differences in juvenile and adult linear extension rates (cm/month) per species. Boxplots shows median values and upper (75) and lower (25) quantiles.
Asterisks represent significant differences. Values above names represent percent increase in growth rates of small/juveniles over adult colonies.

asbestinum (Br), Eunicea calyculata (Ecal), Eunicea laciniata
(Elac), Eunicea laxispica (Elax), Eunicea spp. (Esp), Eunicea
succinea (Esuc), Eunicea tourneforti (Et), Gorgonia ventalina
(Gv), Muricea elongata (Me), Muriceopsis flavida (Mflv),
Antillogorgia acerosa (Aac), Antillogorgia americana (Aam),
Eunicea flexuosa (Eflx), Plexaura homomalla (Ph), Plexaurella
spp. (Plla), and Pseudoplexaura spp. (Psx).

Statistical Analysis
To quantify variation in growth rates, we measured linear
extension using wooden rulers bi-annually. We measured
colonies directly in the field from the bottom to the highest point
in the colony. We based our observations on the height of the
colony and thus did not measure individual branches. We did
not observe major disease events. Because growth rates could be
altered by predation (i.e., decrease in size), we also eliminated all
colonies for which we observed a decrease in linear extension.
In other cases, the overall changes in growth rate were outside
of reasonable ranges for the particular species, thus to avoid
confounding factors, we eliminated all those colonies as well. Our
final dataset consisted of 2,013 colonies.

We calculated linear extension rates (in cm/month) by
subtracting the final measurement from the initial measurement
and dividing by the intervening number of months. In most
cases the total time was 36 months, but in others we only used
part of the data as we were unable to sample all colonies at

the 36th month, so we divided accordingly by the number of
months in each specific case. To compare the effects of species,
size, reefs, depth, and exposure on the linear extension, we used
monthly rates and analyzed them using generalized least square
(GLS) models in R (v. 3.3.4; R Development Core Team, 2008)
with the package nlme (Pinheiro et al., 2012) with a previous
test of normality. In each case, we used model selection to
sequentially test GLS models via likelihood ratio tests to obtain
the optimal fixed structure for each model following Zuur et al.
(2009). We initially tried models with the function varIdent
to control for heteroscedasticity, but those models resulted in
poorer fit. After we found the best model, we tested for the
significance of the remaining fixed terms using likelihood ratio
tests. We then used the multcomp package (Hothorn et al., 2008)
to test for differences among treatments using the generalized
linear hypothesis test (glht) and Tukey (HSD). We also used
the R package agricolae (De Mendiburu, 2009) to generate
different letter groups when testing differences in growth rates
and thickness among species.

Because colony size was a major driver of variation in the
linear extension rates among colonies, we estimated the percent
increase of juveniles over adults by calculating the difference
between the mean value of the two rates and dividing by the
juvenile growth rate times 100 ([juvenile - adult]× 100/juvenile).
To understand the relationship between linear extension rates
and branch thickness we measured the thickness of ten branches
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FIGURE 3 | Differences in mean growth rate (cm/month) across depths per species. Boxplots shows median values and upper (75) and lower (25) quantiles.

per species collected from the same reefs as the colonies sampled
for growth rates. We measured each colony using a caliper
with a 0.01 mm accuracy on dry specimens. We then estimated
correlations between linear extension rates and branch thickness
in R using the geom_smooth function. We did not use branch
thickness in the above GLS model along with species, depth, size,
reef, and exposure because our measurements are from different
colonies than the ones measured for linear extension rate.

RESULTS

Octocorals were common in the sampled area with
>8 colonies/m2. Our 2,013 monitored colonies were distributed
evenly across depths (674 shallow; 707 medium, and 632 deep)
with more colonies in inshore (827) and mid shore (848) areas
and fewer in offshore areas (338). We sampled more adult (1,482)
than small colonies (531) and all species were present across all
depths, exposure levels and sizes.

Linear extension rates varied greatly among Caribbean
shallow water octocorals (Figure 1). The major factors driving
differences in linear extension rates were species and size
(Table 1) and in fact the best model to explain differences in
linear extension rates included only species and size as factors
(AIC = 818, p = 0.004; Supplementary Table S1). The fastest
growing species were the plume-like species Antillogorgia acerosa

and A. americana with a mean rate of 0.53 (SD = 0.38) and
0.51 (SD = 0.37) cm/month) (Figure 1), respectively. Among
the slower growing species were: E. calyculata, E. tourneforti,

TABLE 1 | Full generalized least square (GLS) model across species, depth,
exposure and age (top) and best model (bottom).

numDF F-value p-value

Full model (Species, Size, Exposure and Depth)

Intercept 1 3,578.340 <0.0001

Species 15 13.943 <0.0001

Size 1 27.244 <0.0001

Exposure 2 0.992 0.3712

Depth 2 0.945 0.3887

Species:Size 15 0.514 0.9343

Species:Exposure 30 0.730 0.8558

Size:Exposure 2 0.185 0.8314

Species:Depth 30 2.262 0.0001

Size:Depth 2 3.338 0.0358

Exposure:Depth 4 0.914 0.4551

Species:Size:Exposure 30 0.617 0.9486

Species:Size:Depth 30 1.261 0.1572

Best model (Species and Size)

Intercept 1 3,672.025 <0.0001

Species 15 14.308 <0.0001

Size 1 27.957 <0.0001
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FIGURE 4 | Branch thickness (mm) across species. Colonies are ordered according to their mean value. Error bars represent standard deviation. Letters indicate
significant differences among groups.

and E. laciniata with a mean growth rate of 0.20 (SD = 0.13),
0.24 (SD = 0.15) and 0.27 (SD = 0.11) cm/month, respectively
(Figure 1). Thirteen out of the 16 species (except B. asbestinum,
E. calyculata, and Eunicea spp.) showed a trend towards having
a higher growth rate in juveniles in comparison to adults
(Figure 2). The average increase of small/juveniles over adults is
17.7% (Figure 2).

While depth or exposure did not have a major effect on linear
extension rate variation (lower fit to our data), the interaction
between species and depth is significant in the full model
(Table 1). There is a tendency of seven species (E. calyculata
E. lacinata, E. laxispica, Eunicea sp. E. succinea, E. flexuosa,
and P. homomalla) to grow faster on shallower environments
(Figure 3). Exceptions to this were: A. acerosa, A. americana,
G. ventalina, M. elongata, and Pseudoplexaura spp., which had
higher average growth rates in deeper habitats. The B. absetinum,
E. tourneforti, and Plexaurella spp. showed highest average
growth at intermediate depths (Figure 3).

We found significant variation in branch thickness across
species ranging from 1.8 to 12.6 mm, with pinnate forms
such as A. acerosa, A. americana, and M. flavida thinner than
arborescent colonies (Figure 4) such as the Eunicea, Plexaurella,
and Pseudoplexaura spp. We also found that linear growth rates

negatively correlated with branch thickness (p < 0.001); with
thicker colonies growing slower and thinner colonies growing
faster (Figure 5). Among all studied species, A. acerosa and
A. americana were amongst the thinnest species with a mean
branch diameter of 2.23 (SD = 0.50) and 2.87 (SD = 0.44)
mm, respectively (Figure 4) and displayed the fastest linear
extension rates (Figure 1).

DISCUSSION

Long-term monitoring on Caribbean reefs has provided evidence
that octocoral populations have grown in the last few decades,
at the same time at which scleractinian corals have declined
(Ruzicka et al., 2013; Lenz et al., 2015; Tsounis and Edmunds,
2017; Williams et al., 2017; Al-Marayati and Edmunds, 2018).
A pattern occurring across the region in reefs as distant as
the Florida Keys (Ruzicka et al., 2013), St. John (Tsounis and
Edmunds, 2017), and Puerto Rico (Ballantine et al., 2008;
Yoshioka, 2009; Williams et al., 2017). A key question that
emerges from these studies is what mechanisms allow octocorals
to increase in number on shallow forereefs at the same time at
which scleractinian corals disappear. A major aspect allowing
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FIGURE 5 | Differences in mean branch thickness (cm) in relationship to mean linear extension rate (cm/month) across species.

octocoral populations to increase over time likely rely on changes
in environmental conditions and shifts in the balance of species
interactions and their continuous competition for space.

On healthy coral reefs empty space is scarce and benthic
dwellers often engage in competition to secure a place (Jackson
and Coates, 1986). Some of the strategies to gain a spot on
highly competitive benthic coral reefs include the production
of harmful chemicals that hurt nearby adult competitors or
limit their recruitment (Chadwick and Morrow, 2011), use of
specialized structures to fight or digest nearing organisms (Lang,
1973), recruitment in prime areas such as elevations or inclined
surfaces (Al-Marayati and Edmunds, 2018), association with
symbiotic partners that efficiently remove potential competitors
(Dixson et al., 2014) and fast vertical growth rates to explore
the relatively empty water column and avoid competition
(Yoshioka and Yoshioka, 1991).

Rapid vertical growth facilitates being off the bottom as fast
as possible, minimizing the amount of resources committed to
competition to maintain a spot on the hard bottom (Hughes
and Jackson, 1985; Jackson and Coates, 1986; Yoshioka and
Yoshioka, 1991; Sanchez et al., 2004). Here we studied linear
extension rates on octocoral species that are now common in
most Caribbean shallow forereefs. Our three-year monitoring
suggests that species grow at different rates, with plume-like
corals growing faster than candelabrum-like or arborescent
species. Juveniles (i.e., colonies <10 cm) grow at a faster rate than
adults (>10 cm), and for most species (58%), colonies in shallow

environments grow faster than in the deepest areas. A key aspect
of differences in linear extension rates among species is branch
thickness, with thicker colonies growing slower than thinner
colonies, suggesting that colony architecture influences growth
rates. Below we discuss our results in terms of variation among
species, size/age, depth, and thickness as well as provide context
of our results for conservation.

Variation in Linear Extension Rates
Across Species With Different Branch
Thickness
Our rates range from 6.2 cm a year for Antillogorgia species to
∼2.3 cm a year for the black sausage coral E. lacinata. These
estimates fall within previous reports, suggesting our results
represent a general range of linear extension rates for octocorals
on Caribbean reefs. For example, Cadena and Sánchez (2010)
found that A. acerosa in Colombia grew at a rate of 6–18 cm
per year (compared to our 6.2 cm a year). In contrast albeit for
a different species, Castanaro and Lasker (2003) report slower
growth rate of ∼1.5 cm a year for A. elisabethae in the Bahamas.
Kinzie (1974) reports a rate of 2.0 cm a year for P. homomalla in
the Grand Caymans compared to 4.4 cm per year in our study.
Birkeland (1974) reports the same rate as ours (4.1 cm a year)
for G. ventalina in Panama. Our estimates are also similar, albeit
faster (3.7 cm per year), to those of Brazeau and Lasker (1992) in
Panama for B. asbestinum (2.2 cm a year). All differences from
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our mean values and those reported in the literature fall within
the standard deviations of our measurements.

In general, we found faster linear extension rates in species
with thinner branches. In terms of colony architecture, octocorals
display a large range of growth forms, from thin whip-like
branches to sausage-like branches (Supplementary Table S2).
Our observation that Antilligorgia spp. grow faster correlates
with their higher branching rate and thin pinnate growth, which
seems to promote faster linear growth rates (Sanchez et al.,
2004; Lenihan et al., 2015). Faster growth is possible with
narrower, more flexible branches because it allows for increased
multidirectional water flow between branches, meaning greater
surface areas for gas exchange, particle capture, nutrient uptake,
minimal calcium carbonate and tissue deposition horizontally,
and photosynthesis by the corals’ symbiotic algae (Jokiel, 1978;
Khalesi et al., 2007; Lenihan et al., 2015). In contrast, thick
colonies such as those of Plexaurella spp. have a much smaller
surface to volume ratio, decreasing the number of polyps per unit
of area and thus decreasing their feeding potential. In addition,
colonies with thick branches have to deposit more calcium
carbonate to grow vertically than species with thinner branches,
decreasing their ability to ascend out of the benthos rapidly to
minimize competitive interactions.

Other ecological and biological attributes such as competition
for space, recruitment rates and fertility potential may also
facilitate the increase in abundance of fast-growing species
on shallow Caribbean forereefs. Fast vertical growers such as
the Antillogorgia spp. lessen competition with macroalgae by
quickly growing above the macroalgae canopy, gaining access
to light and seawater flow (Yoshioka and Yoshioka, 1991;
Sanchez et al., 2004). In addition, in Puerto Rico, A. acerosa and
A. americana are among the species with the highest recruitment
rates (Yoshioka, 1998). Given the widespread disturbances on
Caribbean reefs (de Bakker et al., 2019), and the continuous
removal of reef species from benthic habitats (Ruzicka et al., 2013;
Edmunds and Lasker, 2016), plume-like species may have an
advantage to refill these empty spaces and become more common
on Caribbean reefs.

Although linear measurements have some limitations for
quantifying the growth rate of whole organisms, they are
less problematic for arborescent, pinnate or candelabrum like
organisms like the sampled octocorals in this study. A major
drawback from using linear extensions from single branches to
estimate growth rates is that potentially colonies could have small
linear extensions but be composed by many branches that, if
accounted together, could provide faster growth rates. If this
is true, we would expect species with colonies characterized
by many branches to have slower growth rates (as they have
to share resources across many branches) than species with
fewer branches. We observed the opposite. The species with the
slowest growth rates, such as the Plexaurella spp., B. asbestinum,
E. lacinata, and E. calyculata, are in general characterized by
fewer branches (often <10) (Bayer, 1961) than fast-growing
species such as the Antillogorgia spp. and M. flavida. Also,
our measurements were made on mother branches or principal
branches of colonies; Cadena and Sánchez (2010) suggested that
these areas have the fastest vertical growth.

A potential limitation of our study is that it contains only
data from 2003 to 2006 and given the drastic deterioration of
Caribbean reefs in the last decades they are not relevant today.
At least three considerations that suggest our rate estimates
are relevant. First, previous studies on sclerochronology in
scleractinian corals suggest minor variations in growth rates
across many decades (Hubbard and Scaturo, 1985; Huston M.,
1985) and in many cases the rates are still relevant today (Lough
and Cantin, 2014). Second, our estimates fall within previously
reported rates for G. ventalina, B. asbestinum, P. homomalla,
and A. acerosa (Birkeland, 1974; Kinzie, 1974; Yoshioka and
Yoshioka, 1991) suggesting that at least for these four species
they have not varied since the 1970’s. Third, it is unlikely that
linear extension rates in octocorals change without any major re-
arrangement of the colony architecture (i.e., branches becoming
thinner), which to date has not been reported and will likely
take at least a few decades of evolutionary change given their
generation times (>5 years) (Prada et al., 2008; Prada and
Hellberg, 2013; Prada and Hellberg, 2014).

Variation in Linear Extension Rates
Across Life History Stages
For the majority of the octocoral species on this study, small
juvenile colonies grew faster than their older adult counterparts
in terms of linear extension. This observation is consistent
with the fact that smaller individuals are at higher risk of
mortality given that reef communities are space-limited with
fierce competition for space among organisms (Sebens, 1983).
Additionally, small, young individuals are more susceptible than
adults to predation by reef dwellers such as fishes, nudibranchs,
and urchins. As a result, smaller individuals tend to grow
faster until reaching a “safe-size” and then gradually slow down
vegetative growth and switch resources to the energetically
demanding sexual reproduction in adults (Chornesky and Peters,
1987; Beiring and Lasker, 2000; Watling et al., 2011; Viladrich
et al., 2017; Viladrich et al., 2018). This faster growth at smaller
younger sizes is clearly visible in our study. The flexible-
branching morphology of octocorals gives them an advantage
over hard coral recruits (Bartlett et al., 2018). Given their soft
structures and the fact that they have much lower calcification
needs to increase vertical growth, octocorals develop quickly
from a young age (Bartlett et al., 2018).

Variation in Linear Extension Rates
Across Depth
We found that colonies tend to grow faster in shallow (13
out of 16 species), brighter habitats than in deeper and darker
environments. Shallower waters not only receive higher amounts
of sunlight for photosynthesis, but are also exposed to higher
water motion, increased nutrient levels from available food,
metabolites, and gas availability that ultimately enhance coral
growth (Lenihan et al., 2015). This availability of resources
and sufficient amount of light suggests that colonies in shallow
environments will grow faster than in deeper habitats. While
in general this appears to be true (Baker and Weber, 1975;
Huston M., 1985), there are exceptions in which colonies in
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deep environments can be metabolically sustained by active
particle capturing, (i.e., heterotrophy). For example, suspension
feeders are generally less affected by changes in light levels
due to their continuous feeding via particle capture (Sanchez
et al., 1998). Whip-like corals with long, thin branches, such
as ellisellids used in the study by Sanchez et al. (1998) and
the fast growing Antillogorgia spp. in this study both show
fast linear extensions at deeper, darker depths where light is
limited than in shallower, brighter depths. All species that we
studied engage in symbiosis with dinoflagellates of the family
Symbiodiniaceae (van Oppen et al., 2005), and likely derived
part of their energy from photosynthetic products, but are also
capable of active heterotrophic feeding (Kim and Lasker, 1997).
A potential explanation of why they grow faster at depths may
be due to the lower number of predators in deeper habitats. In
the reefs we sampled, flamingo snails, which are major predators
of the sampled octocorals, slightly decrease in abundance with
depth (Lucas et al., 2014).

Another factor that may allow faster growth is the more stable
conditions (compared to shallow areas) of deeper habitats that
allow for stabilized water transparency (Miao and Xie, 2007).
In shallower waters there is a greater variability of transparency
due to fluctuating conditions of water movement, runoff, rainfall,
pollution, and sedimentation, which change the amount of light
passing through the surface and available for the zooxanthellae to
perform photosynthesis (Manikandan et al., 2016). These changes
may cause added stress to the corals housing more photosensitive
algal species in the shallow sites, while the coral species that
extend most rapidly at those sites may contain algae that have
a lesser susceptibility to photoinhibition and variation (Bhagooli
and Hidaka, 2004). Understanding what factors affect octocoral
growth rates at different depths is crucial to understand what kind
of corals are more vulnerable to the continuously deteriorating
environments. As shown by long-term monitoring (Ruzicka et al.,
2013; Lenz et al., 2015; Williams et al., 2017), it seems that
environmental degradation is having less detrimental effect on
octocoral communities (while removing heavy calcifies such as
hard corals), particularly in shallow water environments.

Implications for Coral Reef Conservation
Fast linear growth in octocorals as reported here may minimize
competition with macroalgae and other benthic dwellers,
allowing them to rapidly escape from the benthos, rather than
engaging in continuous competitive interactions such as in most
scleractinians corals (Box and Mumby, 2007; Steve and Peter,
2007). In the Caribbean, only the acroporid species are on par
with the linear extension of octocorals (Bak et al., 2009), and
generally scleractinians are more heavily affected by increased
temperature and bleaching (Prada et al., 2010; Thornhill et al.,
2011) and macroalgal competition (Box and Mumby, 2007) than
are octocorals (Maida et al., 1995; Lasker et al., 2003).

Continued monitoring of growth rates will be critical to
understanding how various reef species are differentially affected,
and in what directions benthic communities will change.
Our data opens up the possibility that fast-growing, plume-
like octocorals may become dominant on Caribbean shallow
forereefs as a result of the continual removal of scleractinian

corals due to climate change. The high standard deviations
from this study indicate that local environmental factors could
have influenced the results, further suggesting the need for
additional experimentation. Given the continued change of
Caribbean shallow forereefs from scleractinian-rich communities
to octocoral forests, it is essential to quantify how fish
communities and other reef dwellers are responding to these
newly accessible habitats.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Gibson Institute of Cognitive Research
Institutional Review Board (IRB). Written informed consent to
participate in this study was provided by the participants’ legal
guardian/next of kin. Written informed consent was obtained
from the individual(s) and/or minor(s) parent for the publication
of any potentially identifiable images or data included in
this article.

AUTHOR CONTRIBUTIONS

CP and DB recorded growth rates in the field. NB analyzed
all data and generated all the figures, and statistical analysis
with DB. CP and NB wrote the manuscript with continuous
feedback from DB, All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by the NOAA Coral Reef Ecosystems
Studies Project. CP was funded by an Earl S. Tupper fellowship
from the Smithsonian Tropical Research Institute and start-up
funds from the College of the Environment and Life Sciences
from the University of Rhode Island.

ACKNOWLEDGMENTS

We would like to thank the Coastal and Environmental
Fellowship Program at the University of Rhode Island. We thank
Paul Yoshioka for initiating this project and to the University
of Puerto Rico in Mayagüez. We would also like to thank Cielo
Montoya for illustrations in Supplementary Table S2.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmars.2020.
00483/full#supplementary-material

Frontiers in Marine Science | www.frontiersin.org 9 June 2020 | Volume 7 | Article 483

https://www.frontiersin.org/articles/10.3389/fmars.2020.00483/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2020.00483/full#supplementary-material
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00483 June 22, 2020 Time: 17:59 # 10

Borgstein et al. Octocorals Growth Faster Than Corals

REFERENCES
Al-Marayati, M., and Edmunds, P. J. (2018). Octocoral distribution is associated

with substratum orientation on coral reefs in St. John, U.S. Virgin Islands.
J. Exp. Mar. Biol. Ecol. 500, 55–62. doi: 10.1016/j.jembe.2017.12.015

Anderson, K. D., Cantin, N. E., Heron, S. F., Pisapia, C., and Pratchett, M. S. (2017).
Variation in growth rates of branching corals along Australia’s Great Barrier
Reef. Sci. Rep. 7:2920.

Ateweberhan, M., Feary, D. A., Keshavmurthy, S., Chen, A., Schleyer, M. H., and
Sheppard, C. R. C. (2013). Climate change impacts on coral reefs: synergies with
local effects, possibilities for acclimation, and management implications. Mar.
Pollut. Bull. 74, 526–539. doi: 10.1016/j.marpolbul.2013.06.011

Bak, R., Nieuwland, G., and Meesters, E. (2009). Coral growth rates revisited after
31 years: What is causing lower extension rates in Acropora palmata? Bull. Mar.
Sci. 84, 287–294.

Baker, P. A., and Weber, J. N. (1975). Coral growth rate: variation with depth. Earth
Planet. Sci. Lett. 27, 57–61. doi: 10.1016/0012-821x(75)90160-0

Ballantine, D. L., Appeldoorn, R. S., Yoshioka, P., Weil, E., Armstrong, R., Garcia,
J. R., et al. (2008). “Biology and ecology of Puerto Rican coral reefs,” in Coral
Reefs of the USA, eds B. M. Riegl and R. E. Dodge (Dordrecht: Springer),
375–406. doi: 10.1007/978-1-4020-6847-8_9

Bartlett, L., Brinkhuis, V., Ruzicka, R., Colella, M., Lunz, K., Leone, E., et al.
(2018). “Dynamics of stony coral and octocoral juvenile assemblages following
disturbance on patch reefs of the Florida reef tract,” in Corals in a Changing
World, eds C. Duque Beltran, and E. Tello Camacho (Rijeka: IntechOpen),
99–120.

Bayer, F. M. (1961). The Shallow-Water Octocorallia of the West Indian Region.
A Manual for marine biologists. The Hague: Martinus Nijhoff.

Beiring, E., and Lasker, H. (2000). Egg production by colonies of a gorgonian coral.
Mar. Ecol. Prog. Ser. 196, 169–177. doi: 10.3354/meps196169

Ben-Zvi, O., Tamir, R., Keren, N., Berman-Frank, I., Kolodny, Y., Benaltabet, T.,
et al. (2020). Photophysiology of a mesophotic coral 3 years after
transplantation to a shallow environment. Coral Reefs. doi: 10.1007/s00338-
020-01910-0

Bhagooli, R., and Hidaka, M. (2004). Photoinhibition, bleaching susceptibility
and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora
pistillata, in response to thermal and light stresses. Comp. Biochem. Physiol. Part
A Mol. Integr. Physiol. 137, 547–555. doi: 10.1016/j.cbpb.2003.11.008

Birkeland, C. (1974). The effect of wave action on the populatlon dynamics of
Gorgonia ventalina Linnaeus. Stud. Trop. Oceanogr. 12, 115–126.

Box, S., and Mumby, P. (2007). Effect of macroalgal competition on growth and
survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342, 139–149. doi:
10.3354/meps342139

Brazeau, D. A., and Lasker, H. R. (1992). Growth rates and growth strategy in a
clonal marine invertebrate, the Caribbean octocoral Briareum asbestinum. Biol.
Bull. 183, 269–277. doi: 10.2307/1542214

Cabral-Tena, R., López-Pérez, A., Reyes-Bonilla, H., Calderon-Aguilera, L., Orión,
N. L., Rodriguez Zaragoza, F., et al. (2018). Calcification of coral assemblages
in the eastern Pacific: reshuffling calcification scenarios under climate change.
Ecol. Indic. 95, 726–734. doi: 10.1016/j.ecolind.2018.08.021

Cadena, N. J., and Sánchez, J. A. (2010). Colony growth in the harvested octocoral
Pseudopterogorgia acerosa in a Caribbean coral reef. Mar. Ecol. 31, 566–573.
doi: 10.1111/j.1439-0485.2010.00397.x

Castanaro, J., and Lasker, H. R. (2003). Colony growth responses of the Caribbean
octocoral, Pseudopterogorgia elisabethae, to harvesting. Invertebr. Biol. 122,
299–307. doi: 10.1111/j.1744-7410.2003.tb00094.x

Chadwick, N. E., and Morrow, K. M. (2011). “Competition among sessile
organisms on coral reefs,” in Coral Reefs: An Ecosystem in Transition, eds Z.
Dubinsky and N. Stambler (Dordrecht: Springer), 347–371. doi: 10.1007/978-
94-007-0114-4_20

Chornesky, E. A., and Peters, E. C. (1987). Sexual reproduction and colony growth
in the scleractinian coral Porites astreoides. Biol. Bull. 172, 161–177. doi: 10.
2307/1541790

Connell, J. (1973). “Population ecology of reef-building corals,” in Biology and
Geology of Coral Reefs, eds A. Jones and R. Endeam (London: Academic Press),
205–245. doi: 10.1016/b978-0-12-395526-5.50015-8

Cortés, J., and Reyes-Bonilla, H. (2017). “Human influences on eastern tropical
Pacific coral communities and coral reefs,” in Coral Reefs of the Eastern Tropical

Pacific: Persistence and Loss in a Dynamic Environment, eds P. W. Glynn, D. P.
Manzello, and I. C. Enochs (Dordrecht: Springer), 549–563. doi: 10.1007/978-
94-017-7499-4_20

Costanza, R., Groot, R., Sutton, P., Van Der Ploeg, S., Anderson, S., Kubiszewski, I.,
et al. (2014). Changes in the global value of ecosystem services. Glob. Environ.
Change 26, 152–158.

de Bakker, D. M., Van Duyl, F. C., Perry, C. T., and Meesters, E. H. (2019).
Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean
fringing reef linked to local human disturbance gradients. Glob. Change Biol.
25, 4092–4104. doi: 10.1111/gcb.14800

De Mendiburu, F. (2009). Una Herramienta de Analisis Estadistico Para la
Investigacion Agricola. Ph.D. thesis, Universidad Nacional Agraria La Molina,
Rimac.

Dixson, D., Abrego, D., and Hay, M. (2014). Chemically mediated behavior of
recruiting corals and fishes: a tipping point that may limit reef recovery. Science
345, 892–897. doi: 10.1126/science.1255057

Edmunds, P. J. (2013). Decadal-scale changes in the community structure of coral
reefs of St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 489, 107–123. doi:
10.3354/meps10424

Edmunds, P. J., and Lasker, H. R. (2016). Cryptic regime shift in benthic
community structure on shallow reefs in St. John, US Virgin Islands. Mar. Ecol.
Prog. Ser. 559, 1–12. doi: 10.3354/meps11900

Forsman, Z. H., Page, C. A., Toonen, R. J., and Vaughan, D. (2015). Growing coral
larger and faster: micro-colony-fusion as a strategy for accelerating coral cover.
PeerJ 3:e1313. doi: 10.7717/peerj.1313

Gabay, Y., Fine, M., Barkay, Z., and Benayahu, Y. (2014). Octocoral tissue provides
protection from declining oceanic pH. PLoS One 9:e91553. doi: 10.1371/journal.
pone.0091553

Gómez, C. E., Paul, V. J., Ritson-Williams, R., Muehllehner, N., Langdon, C., and
Sánchez, J. A. (2015). Responses of the tropical gorgonian coral Eunicea fusca to
ocean acidification conditions. Coral Reefs 34, 451–460. doi: 10.1007/s00338-
014-1241-3

Goulet, T. L., Shirur, K. P., Ramsby, B. D., and Iglesias-Prieto, R. (2017). The
effects of elevated seawater temperatures on Caribbean gorgonian corals and
their algal symbionts, Symbiodinium spp. PLoS One 12:e0171032. doi: 10.1371/
journal.pone.0171032

Green, D. H., Edmunds, P. J., and Carpenter, R. C. (2008). Increasing relative
abundance of Porites astreoides on Caribbean reefs mediated by an overall
decline in coral cover. Mar. Ecol. Prog. Ser. 359, 1–10. doi: 10.3354/meps07454

Hagedorn, M., Page, C. A., O’neil, K., Flores, D. M., Tichy, L., Chamberland, V. F.,
et al. (2018). Successful demonstration of assisted gene flow in the threatened
coral Acropora palmata across genetically-isolated Caribbean populations using
cryopreserved sperm. bioRxiv [Preprint]. doi: 10.1101/492447

Hoegh-Guldberg, O., Mumby, P., Hooten, A. J., Steneck, R. S., Greenfield, P.,
Gomez, E., et al. (2008). Coral reefs under rapid climate change and ocean
acidification. Science 318, 1737–1742.

Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general
parametric models. Biom. J. 50, 346–363. doi: 10.1002/bimj.200810425

Hubbard, D. K., and Scaturo, D. (1985). Growth rates of seven species of
scleractinean corals from Cane Bay and Salt River, St. Croix, USVI. Bull. Mar.
Sci. 36, 325–338.

Hughes, T. P., and Connell, J. H. (1987). Population dynamics based on size or age?
A reef-coral analysis. Am. Nat. 129, 818–829. doi: 10.1086/284677

Hughes, T. P., and Jackson, J. B. C. (1985). Population dynamics and life histories
of foliaceous corals. Ecol. Monogr. 55, 141–166. doi: 10.2307/1942555

Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M.,
et al. (2018). Global warming transforms coral reef assemblages. Nature 556,
492–496. doi: 10.1038/s41586-018-0041-2

Huston, M. A. (1985). Patterns of species diversity on coral reefs. Annu. Rev. Ecol.
Syst. 16, 149–177. doi: 10.1146/annurev.es.16.110185.001053

Huston, M. (1985). Variation in coral growth rates with depth at Discovery Bay,
Jamaica. Coral Reefs 4, 19–25. doi: 10.1007/bf00302200

Jackson, J., Donovan, M., Cramer, K., and Lam, V. (2014). Status and Trends
of Caribbean Coral Reefs: 1970–2012 Global Coral Reef Monitoring Network.
Gland: IUCN.

Jackson, J. B. C., and Coates, A. G. (1986). Life cycles and evolution of clonal
(modular) animals. Philos.Trans. R. Soc. Lond. Ser. B Biol. Sci. 313:7. doi:
10.1098/rstb.1986.0022

Frontiers in Marine Science | www.frontiersin.org 10 June 2020 | Volume 7 | Article 483

https://doi.org/10.1016/j.jembe.2017.12.015
https://doi.org/10.1016/j.marpolbul.2013.06.011
https://doi.org/10.1016/0012-821x(75)90160-0
https://doi.org/10.1007/978-1-4020-6847-8_9
https://doi.org/10.3354/meps196169
https://doi.org/10.1007/s00338-020-01910-0
https://doi.org/10.1007/s00338-020-01910-0
https://doi.org/10.1016/j.cbpb.2003.11.008
https://doi.org/10.3354/meps342139
https://doi.org/10.3354/meps342139
https://doi.org/10.2307/1542214
https://doi.org/10.1016/j.ecolind.2018.08.021
https://doi.org/10.1111/j.1439-0485.2010.00397.x
https://doi.org/10.1111/j.1744-7410.2003.tb00094.x
https://doi.org/10.1007/978-94-007-0114-4_20
https://doi.org/10.1007/978-94-007-0114-4_20
https://doi.org/10.2307/1541790
https://doi.org/10.2307/1541790
https://doi.org/10.1016/b978-0-12-395526-5.50015-8
https://doi.org/10.1007/978-94-017-7499-4_20
https://doi.org/10.1007/978-94-017-7499-4_20
https://doi.org/10.1111/gcb.14800
https://doi.org/10.1126/science.1255057
https://doi.org/10.3354/meps10424
https://doi.org/10.3354/meps10424
https://doi.org/10.3354/meps11900
https://doi.org/10.7717/peerj.1313
https://doi.org/10.1371/journal.pone.0091553
https://doi.org/10.1371/journal.pone.0091553
https://doi.org/10.1007/s00338-014-1241-3
https://doi.org/10.1007/s00338-014-1241-3
https://doi.org/10.1371/journal.pone.0171032
https://doi.org/10.1371/journal.pone.0171032
https://doi.org/10.3354/meps07454
https://doi.org/10.1101/492447
https://doi.org/10.1002/bimj.200810425
https://doi.org/10.1086/284677
https://doi.org/10.2307/1942555
https://doi.org/10.1038/s41586-018-0041-2
https://doi.org/10.1146/annurev.es.16.110185.001053
https://doi.org/10.1007/bf00302200
https://doi.org/10.1098/rstb.1986.0022
https://doi.org/10.1098/rstb.1986.0022
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00483 June 22, 2020 Time: 17:59 # 11

Borgstein et al. Octocorals Growth Faster Than Corals

Jokiel, P. L. (1978). Effects of water motion on reef corals. J. Exp. Mar. Biol. Ecol.
35, 87–97. doi: 10.1016/0022-0981(78)90092-8

Khalesi, M. K., Beeftink, H. H., and Wijffels, R. H. (2007). Flow-dependent growth
in the zooxanthellate soft coral Sinularia flexibilis. J. Exp. Mar. Biol. Ecol. 351,
106–113. doi: 10.1016/j.jembe.2007.06.007

Kim, K., and Lasker, H. R. (1997). Flow-mediated competition among suspension
feeding gorgonians. J. Exp. Mar. Biol. Ecol. 215, 49–64. doi: 10.1016/s0022-
0981(97)00015-4

Kinzie, R. A. (1974). Plexaura homomalla: the biology and ecology of a hawestable
resource. Stud. Trop. Oceanogr. 111, 22–38.

Lang, J. C. (1973). Interspecific aggression by scleractinian corals. II. Why the race
is not always to the swift. Bull. Mar. Sci. 23, 260–279.

Lasker, H. R., Boller, M. L., Castanaro, J., and Sanchez, J. A. (2003). Determinate
growth and modularity in a gorgonian octocoral. Biol. Bull. 205, 319–330.
doi: 10.2307/1543295

Lenihan, H. S., Hench, J. L., Holbrook, S. J., Schmitt, R. J., and Potoski, M. (2015).
Hydrodynamics influence coral performance through simultaneous direct and
indirect effects. Ecology 96, 1540–1549. doi: 10.1890/14-1115.1

Lenz, E. A., Bramanti, L., Lasker, H. R., and Edmunds, P. J. (2015). Long-term
variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs
34, 1099–1109. doi: 10.1007/s00338-015-1315-x

Lesser, M. P., Ojimi, M., Gates, R., Stat, M., Slattery, M., and Grottoli, A. G.
(2010). Photoacclimatization by the coral Montastraea cavernosa in the meso-
photic zone: Light, food, and genetics. Ecology 91, 990–1003. doi: 10.1890/09-
0313.1

Lough, J. M., and Cantin, N. E. (2014). Perspectives on massive coral growth
rates in a changing ocean. Biol. Bull. 226, 187–202. doi: 10.1086/bblv226n
3p187

Lucas, M. Q., Rodriguez, L. R., Sanabria, D. J., and Weil, E. (2014). Natural prey
preferences and spatial variability of predation pressure by Cyphoma gibbosum
(Mollusca: Gastropoda) on octocoral communities off La Parguera, Puerto Rico.
Int. Sch. Res. Notices 2014:742387.

Maida, M., Sammarco, P. W., and Coll, J. C. (1995). Effects of soft corals
on scleractinian coral recruitment: directional allelopathy and inhibition of
settlement. Mar. Ecol. Prog. Ser. 121, 191–202. doi: 10.3354/meps121191

Manikandan, B., Jeyaraman, R., Mohan, H., Rengaiyan, P., Murali, M., and Ingole,
B. (2016). Community structure and coral health status across the depth
gradients of Grande Island, Central west coast of India. Reg. Stud. Mar. Sci. 7,
150–158.

Miao, Z.-Q., and Xie, Y.-H. (2007). Effects of water-depth on hydrodynamic force
of artificial reef. J. Hydrodyn. Ser. B 19, 372–377. doi: 10.1016/s1001-6058(07)
60072-9

Pandolfi, J. M., Jackson, J. B. C., Baron, N., Bradbury, R. H., Guzman, H. M.,
Hughes, T. P., et al. (2005). Are U.S. coral reefs on the slippery slope to slime?
Science 307, 1725–1726. doi: 10.1126/science.1104258

Pinheiro, J. C., Bates, D. J., DebRoy, S., and Sakar, D. (2012). The Nlme Package:
Linear and Nonlinear Mixed Effects Models, R Version 3.

Prada, C., and Hellberg, M. E. (2013). Long prereproductive selection and
divergence by depth in a Caribbean candelabrum coral. Proc. Natl. Acad. Sci.
U.S.A. 110, 3961–3966. doi: 10.1073/pnas.1208931110

Prada, C., and Hellberg, M. E. (2014). Strong natural selection on juveniles
maintains a narrow adult hybrid zone in a broadcast spawner. Am. Nat. 184,
702–713. doi: 10.1086/678403

Prada, C., Schizas, N. V., and Yoshioka, P. M. (2008). Phenotypic plasticity or
speciation? A case from a clonal marine organism. BMC Evol. Biol. 8:47. doi:
10.1186/1471-2148-8-47

Prada, C., Weil, E., and Yoshioka, P. M. (2010). Octocoral bleaching during unusual
thermal stress. Coral Reefs 29, 41–45. doi: 10.1007/s00338-009-0547-z

R Development Core Team (2008). R: A Language and Environment for Statistical
Computing. Vienna: R Foundation for Statistical Computing.

Ruzicka, R., Colella, M., Porter, J., Morrison, J., Kidney, J., Brinkhuis, V., et al.
(2013). Temporal changes in benthic assemblages on Florida Keys reefs 11
years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141. doi:
10.3354/meps10427

Sala, E., and Knowlton, N. (2006). Global marine biodiversity trends. Annu. Rev.
Environ. Resour. 31, 93–122.

Sanchez, J. A., Lasker, H., Nepomuceno, E., Sánchez, J., and Woldenberg, M.
(2004). Branching and self-organization in marine modular colonial organisms:
a model. Am. Nat. 163, E24–E39.

Sanchez, J. A., and Wirshing, H. H. (2005). A field key to the identification of
tropical western Atlantic zooxanthellate octocorals (Octocorallia: Cnidaria).
Caribb. J. Sci. 41, 508–522.

Sanchez, J. A., Zea, S., and Diaz, J. (1998). Patterns of octocoral and black
coral distribution in the oceanic barrier reef-complex of Providencia Island,
southwestern Caribbean. Caribb. J. Sci. 34, 250–264.

Sebens, K. P. (1983). The larval and juvenile ecology of the temperate octocoral
Alcyonium siderium Verrill. I. Substratum selection by benthic larvae. J. Exp.
Mar. Biol. Ecol. 71, 73–89. doi: 10.1016/0022-0981(83)90105-3

Sebens, K. P., and Done, T. J. (1992). “Water flow, growth form and distribution of
scleractinian corals: Davies Reef, (GBR), Australia,” in Proceedings of the Seventh
International Coral Reef Symposium, Vol. 1 (Guam: University of Guam Press),
557–568.

Steve, J. B., and Peter, J. M. (2007). Effect of macroalgal competition on growth and
survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342, 139–149.

Thornhill, D. J., Rotjan, R. D., Todd, B. D., Chilcoat, G. C., Iglesias-Prieto, R.,
Kemp, D. W., et al. (2011). A connection between colony biomass and death in
Caribbean reef-building corals. PLoS One 6:e29535. doi: 10.1371/journal.pone.
0029535

Tsounis, G., and Edmunds, P. J. (2017). Three decades of coral reef community
dynamics in St. John, USVI: a contrast of scleractinians and octocorals.
Ecosphere 8:e01646. doi: 10.1002/ecs2.1646

van Oppen, M. J. H., Mieog, J. C., Sánchez, C. A., and Fabricius, K. E. (2005).
Diversity of algal endosymbionts (zooxanthellae) in tropical octocorals: the
roles of geography and host relationships. Mol. Ecol. 14, 2403–2417. doi: 10.
1111/j.1365-294x.2005.02545.x

Viladrich, N., Bramanti, L., Tsounis, G., Martínez-Quitana, A., Ferrier-Pagès, C.,
and Rossi, S. (2017). Variation of lipid and free fatty acid contents during larval
release in two temperate octocorals according to their trophic strategy. Mar.
Ecol. Prog. Ser. 573, 117–128. doi: 10.3354/meps12141

Viladrich, N., Gori, A., and Gili, J. M. (2018). Fast growth rate in a young colony of
the Mediterranean gorgonian Eunicella singularis. Mar. Biodivers. 48, 951–952.
doi: 10.1007/s12526-016-0554-6

Watling, L., France, S. C., Pante, E., and Simpson, A. (2011). Chapter two biology
of deep-water Octocorals. Adv. Mar. Biol. 60, 41–122. doi: 10.1016/b978-0-12-
385529-9.00002-0

Wells, S., Ravilious, C., and Corcoran, E. (2006). In the Front Line: Shoreline
Protection and Other Ecosystem Services from Mangroves and Coral Reefs.
Cambridge: United Nations Environment Programme.

Williams, S. M., Sánchez-Godínez, C., Newman, S. P., and Cortés, J. (2017).
Ecological assessments of the coral reef communities in the Eastern Caribbean
and the effects of herbivory in influencing coral juvenile density and algal cover.
Mar. Ecol. 38:e12395. doi: 10.1111/maec.12395

Yoshioka, P. (1998). Variable recruitment and its effects on the population and
community structure of shallow-water gorgonians. Bull. Mar. Sci. 59, 433–443.

Yoshioka, P. (2009). Sediment transport and the distribution of shallow-water
gorgonians. Caribb. J. Sci. 45, 254–259. doi: 10.18475/cjos.v45i2.a12

Yoshioka, P. M., and Yoshioka, B. B. (1991). A comparison of the survivorship and
growth of shallow-water gorgonian species of Puerto Rico. Mar. Ecol. Prog. Ser.
69, 253–260. doi: 10.3354/meps069253

Zuur, A., Ieno, E. N., Walker, N., Saveliev, A., and Smith, G. M. (2009). Mixed Effects
Models and Extensions in Ecology With R. Cham: Springer.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Borgstein, Beltrán and Prada. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 11 June 2020 | Volume 7 | Article 483

https://doi.org/10.1016/0022-0981(78)90092-8
https://doi.org/10.1016/j.jembe.2007.06.007
https://doi.org/10.1016/s0022-0981(97)00015-4
https://doi.org/10.1016/s0022-0981(97)00015-4
https://doi.org/10.2307/1543295
https://doi.org/10.1890/14-1115.1
https://doi.org/10.1007/s00338-015-1315-x
https://doi.org/10.1890/09-0313.1
https://doi.org/10.1890/09-0313.1
https://doi.org/10.1086/bblv226n3p187
https://doi.org/10.1086/bblv226n3p187
https://doi.org/10.3354/meps121191
https://doi.org/10.1016/s1001-6058(07)60072-9
https://doi.org/10.1016/s1001-6058(07)60072-9
https://doi.org/10.1126/science.1104258
https://doi.org/10.1073/pnas.1208931110
https://doi.org/10.1086/678403
https://doi.org/10.1186/1471-2148-8-47
https://doi.org/10.1186/1471-2148-8-47
https://doi.org/10.1007/s00338-009-0547-z
https://doi.org/10.3354/meps10427
https://doi.org/10.3354/meps10427
https://doi.org/10.1016/0022-0981(83)90105-3
https://doi.org/10.1371/journal.pone.0029535
https://doi.org/10.1371/journal.pone.0029535
https://doi.org/10.1002/ecs2.1646
https://doi.org/10.1111/j.1365-294x.2005.02545.x
https://doi.org/10.1111/j.1365-294x.2005.02545.x
https://doi.org/10.3354/meps12141
https://doi.org/10.1007/s12526-016-0554-6
https://doi.org/10.1016/b978-0-12-385529-9.00002-0
https://doi.org/10.1016/b978-0-12-385529-9.00002-0
https://doi.org/10.1111/maec.12395
https://doi.org/10.18475/cjos.v45i2.a12
https://doi.org/10.3354/meps069253
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

	Variable Growth Across Species and Life Stages in Caribbean Reef Octocorals
	Introduction
	Materials and Methods
	Field Measurements
	Statistical Analysis

	Results
	Discussion
	Variation in Linear Extension Rates Across Species With Different Branch Thickness
	Variation in Linear Extension Rates Across Life History Stages
	Variation in Linear Extension Rates Across Depth
	Implications for Coral Reef Conservation

	Data Availability Statement
	ETHICS STATEMENT
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


